(Source: gizmag.com)
If you’ve ever watched a flying bird weaving its way through a forest, you may have wondered how it could do so without hitting its wings on the trees. Well, birds actually do hit trees with their wings. Unlike the rigid wings of an aircraft, however, birds’ wings simply fold back under impact, then immediately fold open again to maintain flight. Now, scientists from Stanford University have developed wings for flapping-wing drones that do the same thing.
Created by researchers David Lentink and Amanda Stowers, the bird/bat-inspired wings are made from carbon fiber and Mylar film. Each one consists of two joined sub-wings: an “arm” wing and a “hand” wing. A 3D-printed “wrist” joint hinges the two together, allowing the hand wing to fold back over the arm wing. The arm wing is likewise joined to the body by a “shoulder” joint.
In regular flapping-wing flight, centrifugal force keeps the hand and arm wings extended, creating a full flight surface. When hit with a steel rod, however, the wing temporarily gives way and folds back without any damage. As the flapping motion continues, the two sub-wings are pulled back open as they were before, within a single wing beat.
Additionally, no electronics are necessary, as the wing-morphing process is completely passive. This makes it much lighter and more reliable than a system requiring motors or computer activation.
Continue Reading at gizmag.com…
Alan is serial entrepreneur, active angel investor, and a drone enthusiast. He co-founded DRONELIFE.com to address the emerging commercial market for drones and drone technology. Prior to DRONELIFE.com, Alan co-founded Where.com, ThinkingScreen Media, and Nurse.com. Recently, Alan has co-founded Crowditz.com, a leader in Equity Crowdfunding Data, Analytics, and Insights. Alan can be reached at alan(at)dronelife.com
Leave a Reply